Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611176

RESUMEN

Within the realm of dental material innovation, this study pioneers the incorporation of tung oil into polyurea coatings, setting a new precedent for enhancing self-healing functionality and durability. Originating from an ancient practice, tung oil is distinguished by its outstanding water resistance and microbial barrier efficacy. By synergizing it with polyurea, we developed coatings that unite mechanical strength with biological compatibility. The study notably quantifies self-healing efficiency, highlighting the coatings' exceptional capacity to mend physical damages and thwart microbial incursions. Findings confirm that tung oil markedly enhances the self-repair capabilities of polyurea, leading to improved wear resistance and the inhibition of microbial growth, particularly against Streptococcus mutans, a principal dental caries pathogen. These advancements not only signify a leap forward in dental material science but also suggest a potential redefinition of dental restorative practices aimed at prolonging the lifespan of restorations and optimizing patient outcomes. Although this study lays a substantial foundation for the utilization of natural oils in the development of medical-grade materials, it also identifies the critical need for comprehensive cytotoxicity assays. Such evaluations are essential to thoroughly assess the biocompatibility and the safety profile of these innovative materials for clinical application. Future research will concentrate on this aspect, ensuring that the safety and efficacy of the materials align with clinical expectations for dental restorations.

2.
J Neural Eng ; 21(2)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38565124

RESUMEN

Objective.Recent studies have shown that integrating inertial measurement unit (IMU) signals with surface electromyographic (sEMG) can greatly improve hand gesture recognition (HGR) performance in applications such as prosthetic control and rehabilitation training. However, current deep learning models for multimodal HGR encounter difficulties in invasive modal fusion, complex feature extraction from heterogeneous signals, and limited inter-subject model generalization. To address these challenges, this study aims to develop an end-to-end and inter-subject transferable model that utilizes non-invasively fused sEMG and acceleration (ACC) data.Approach.The proposed non-invasive modal fusion-transformer (NIMFT) model utilizes 1D-convolutional neural networks-based patch embedding for local information extraction and employs a multi-head cross-attention (MCA) mechanism to non-invasively integrate sEMG and ACC signals, stabilizing the variability induced by sEMG. The proposed architecture undergoes detailed ablation studies after hyperparameter tuning. Transfer learning is employed by fine-tuning a pre-trained model on new subject and a comparative analysis is performed between the fine-tuning and subject-specific model. Additionally, the performance of NIMFT is compared to state-of-the-art fusion models.Main results.The NIMFT model achieved recognition accuracies of 93.91%, 91.02%, and 95.56% on the three action sets in the Ninapro DB2 dataset. The proposed embedding method and MCA outperformed the traditional invasive modal fusion transformer by 2.01% (embedding) and 1.23% (fusion), respectively. In comparison to subject-specific models, the fine-tuning model exhibited the highest average accuracy improvement of 2.26%, achieving a final accuracy of 96.13%. Moreover, the NIMFT model demonstrated superiority in terms of accuracy, recall, precision, and F1-score compared to the latest modal fusion models with similar model scale.Significance.The NIMFT is a novel end-to-end HGR model, utilizes a non-invasive MCA mechanism to integrate long-range intermodal information effectively. Compared to recent modal fusion models, it demonstrates superior performance in inter-subject experiments and offers higher training efficiency and accuracy levels through transfer learning than subject-specific approaches.


Asunto(s)
Gestos , Reconocimiento en Psicología , Recuerdo Mental , Suministros de Energía Eléctrica , Redes Neurales de la Computación , Electromiografía
3.
J Exp Bot ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38465908

RESUMEN

Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) and AMP-activated protein kinase (AMPK) are highly conserved. Compound 991 is an AMPK activator in mammals. However, whether 991 also activates SnRK1 remains unknown. The addition of 991 significantly increased SnRK1 activity in desalted extracts from germinating rice seeds in vitro. To determine whether 991 has biological activity, rice seeds were treated with different concentrations of 991. Germination was promoted at low concentrations but inhibited at high concentrations. The effects of 991 on germination were similar to those of OsSnRK1a overexpression. To explore whether 991 affects germination by specifically affecting SnRK1, germination of an snrk1a mutant and wild type under 1 µM 991 treatment was compared. The snrk1a mutant was insensitive to 991. Phosphoproteomic analysis showed that the differential phosphopeptides induced by 991 and OsSnRK1a overexpression largely overlapped. Furthermore, SnRK1 might regulate rice germination in a dosage-dependent manner by regulating the phosphorylation of S285-PIP2;4, S1013-SOS1, and S110-ABI5. These results indicate that 991 is a specific SnRK1 activator in rice. The promotion and inhibition of germination by 991 also occurred in wheat seeds. Thus, 991 is useful for exploring SnRK1 function and the chemical regulation of growth and development in crops.

4.
Small ; : e2312086, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412409

RESUMEN

Rechargeable aqueous aluminum batteries (AABs) are promising energy storage technologies owing to their high safety and ultra-high energy-to-price ratio. However, either the strong electrostatic forces between high-charge-density Al3+ and host lattice, or sluggish large carrier-ion diffusion toward the conventional inorganic cathodes generates inferior cycling stability and low rate-capacity. To overcome these inherent confinements, a series of promising redox-active organic materials (ROMs) are investigated and a π-conjugated structure ROMs with synergistic C═O and C═N groups is optimized as the new cathode in AABs. Benefiting from the joint utilization of multi-redox centers and rich π-π intermolecular interactions, the optimized ROMs with unique ion coordination storage mechanism facilely accommodate complex active ions with mitigated coulombic repulsion and robust lattice structure, which is further validated via theoretical simulations. Thus, the cathode achieves enhanced rate performance (153.9 mAh g-1 at 2.0 A g-1 ) and one of the best long-term stabilities (125.7 mAh g-1 after 4,000 cycles at 1.0 A g-1 ) in AABs. Via molecular exploitation, this work paves the new direction toward high-performance cathode materials in aqueous multivalent-ion battery systems.

6.
Adv Mater ; 35(51): e2301538, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37876329

RESUMEN

The strong electrostatic interaction between high-charge-density zinc ions (112 C mm-3 ) and the fixed crystallinity of traditional oxide cathodes with delayed charge compensation hinders the development of high-performance aqueous zinc-ion batteries (AZIBs). Herein, to intrinsically promote electron transfer efficiency and improve lattice tolerance, a revolutionary family of high-entropy oxides (HEOs) materials with multipath electron transfer and remarkable structural stability as cathodes for AZIBs is proposed. Benefiting from the unique "cock-tail" effect, the interaction of diverse type metal-atoms in HEOs achieves essentially broadened d-band and lower degeneracy than monometallic oxides, which contribute to convenient electron transfer and one of the best rate-performances (136.2 mAh g-1 at 10.0 A g-1 ) in AZIBs. In addition, the intense lattice strain field of HEOs is highly tolerant to the electrostatic repulsion of high-charge-density Zn2+ , leading to the outstanding cycling stability in AZIBs. Moreover, the super selectability of elements in HEOs exhibits significant potential for AZIBs.

7.
BMC Genomics ; 24(1): 617, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848864

RESUMEN

BACKGROUND: Oculomotor nerve palsy (ONP) is a neuroparalytic disorder resulting in dysfunction of innervating extraocular muscles (EOMs), of which the pathological characteristics remain underexplored. METHODS: In this study, medial rectus muscle tissue samples from four ONP patients and four constant exotropia (CXT) patients were collected for RNA sequencing. Differentially expressed circular RNAs (circRNAs) were identified and included in functional enrichment analysis, followed by interaction analysis with microRNAs and mRNAs as well as RNA binding proteins. Furthermore, RT-qPCR was used to validate the expression level of the differentially expressed circRNAs. RESULTS: A total of 84 differentially expressed circRNAs were identified from 10,504 predicted circRNAs. Functional enrichment analysis indicated that the differentially expressed circRNAs significantly correlated with skeletal muscle contraction. In addition, interaction analyses showed that up-regulated circRNA_03628 was significantly interacted with RNA binding protein AGO2 and EIF4A3 as well as microRNA hsa-miR-188-5p and hsa-miR-4529-5p. The up-regulation of circRNA_03628 was validated by RT-qPCR, followed by further elaboration of the expression, location and clinical significance of circRNA_03628 in EOMs of ONP. CONCLUSIONS: Our study may shed light on the role of differentially expressed circRNAs, especially circRNA_03628, in the pathological changes of EOMs in ONP.


Asunto(s)
MicroARNs , ARN Circular , Humanos , ARN Circular/genética , Músculos Oculomotores/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Análisis de Secuencia de ARN , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
8.
Adv Sci (Weinh) ; 10(32): e2303375, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37759400

RESUMEN

Disuse osteoporosis is characterized by decreased bone mass caused by abnormal mechanical stimulation of bone. Piezo1 is a major mechanosensitive ion channel in bone homeostasis. However, whether intervening in the action of Piezo1 can rescue disuse osteoporosis remains unresolved. In this study, a commonly-used hindlimb-unloading model is employed to simulate microgravity. By single-cell RNA sequencing, bone marrow-derived mesenchymal stem cells (BMSCs) are the most downregulated cell cluster, and coincidentally, Piezo1 expression is mostly enriched in those cells, and is substantially downregulated by unloading. Importantly, activation of Piezo1 by systemically-introducing yoda1 mimics the effects of mechanical stimulation and thus ameliorates bone loss under simulated microgravity. Mechanistically, Piezo1 activation promotes the proliferation and osteogenic differentiation of Gli1+ BMSCs by activating the ß-catenin and its target gene activating transcription factor 4 (ATF4). Inhibiting ß-catenin expression substantially attenuates the effect of yoda1 on bone loss, possibly due to inhibited proliferation and osteogenic differentiation capability of Gli1+ BMSCs mediated by ATF4. Lastly, Piezo1 activation also slightly alleviates the osteoporosis of OVX and aged mice. In conclusion, impaired function of Piezo1 in BMSCs leads to insufficient bone formation especially caused by abnormal mechanical stimuli, and is thus a potential therapeutic target for osteoporosis.


Asunto(s)
Osteoporosis , Ingravidez , Animales , Ratones , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/farmacología , beta Catenina/genética , Canales Iónicos/farmacología , Canales Iónicos/uso terapéutico , Osteogénesis , Osteoporosis/etiología , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/farmacología , Proteína con Dedos de Zinc GLI1/uso terapéutico
9.
Plant Physiol Biochem ; 203: 108048, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37757719

RESUMEN

The redistribution of nonstructural carbohydrates (NSCs) in rice (Oryza sativa) sheaths contributes greatly to grain filling. Sucrose nonfermenting-1-related protein kinase 1 (SnRK1) regulates sheath-to-panicle transport of NSCs during rice grain filling; however, it is unknown whether elevated activity of SnRK1 in sheaths improves NSC transport and grain filling. Expression of OsSnRK1a is mainly responsible for regulating SnRK1 activity in rice sheaths. Analysis of transgenic rice plants containing the OsSnRK1a promoter::GUS construct indicated that OsSnRK1a is widely expressed in rice. Notably, OsSnRK1a is highly expressed in mesophyll cells of sheaths. Therefore, a green tissue promoter specifically expressed in sheaths and leaf parenchyma cells and phloem tissue was used to over-express OsSnRK1a in japonica rice. The transgenic lines exhibited increased SnRK1a expression and SnRK1 activity in sheaths. The NSC and starch in the transgenic lines and WT all showed accumulation before heading and during the early-filling stage, and declining at the peak filling stage. But the starch and NSC content in transgenic lines was lower than that of WT. Moreover, the transgenic lines showed lower sucrose contents and higher sucrose efflux rates. The accelerated sheath NSC transport improved grain filling, and stimulated panicle development in transgenic lines. SnRK1a expression and SnRK1 activity were also increased in the leaves of transgenic lines, which improved leaf photosynthetic activity and contributed to optimal grain filling and panicle development. These results verify the promotion of high SnRK1 activity in sheath NSC transport, and also provide a new approach to improving sheath NSC transport and rice yield.

10.
ACS Nano ; 17(17): 17476-17488, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37606308

RESUMEN

Rechargeable zinc-air batteries (ZABs) have been considered promising as next-generation sustainable energy storage devices; however, their large-scale deployment is hampered by the unsatisfactory cyclic lifespan. Employing neutral and mild-acidic electrolytes is effective in extending the cyclability, but the rapid performance degradation of the bifunctional catalysts owing to different microenvironmental requirements of the alternative oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is still a serious limitation of their cyclic life. Herein, we propose a "self-decoupling" strategy to significantly improve the stability of the bifunctional catalysts by constructing a smart interface in the bifunctional air electrode. This smart interface, containing a resistance-switchable sulfonic acid doped polyaniline nanoarray interlayer, is nonconductive at high potential but conductive at low potential, which enables spontaneous electrochemical decoupling of the bifunctional catalyst for the ORR and OER, respectively, and thus protects it from degradation. The resulting self-decoupled mild-acidic ZAB delivers stable cyclic performances in terms of a negligible energy efficiency loss of 0.015% cycle-1 and 3 times longer cycle life (∼1400 h) compared with the conventional mild-acidic ZAB using a normal bifunctional air electrode and the same low-cost ZnCo phosphide/nitrogen-doped carbon bifunctional catalyst. This work provides an effective strategy for tolerating alternative oxidation-reduction reactions and emphasizes the importance of smart nanostructure design for more sustainable batteries.

11.
Front Immunol ; 14: 1163739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025993

RESUMEN

Aim: To investigate the molecular mechanism underlying the onset of choroidal neovascularization (CNV). Methods: Integrated transcriptomic and proteomic analyses of retinas in mice with laser-induced CNV were performed using RNA sequencing and tandem mass tag. In addition, the laser-treated mice received systemic interferon-ß (IFN-ß) therapy. Measurements of CNV lesions were acquired by the confocal analysis of stained choroidal flat mounts. The proportions of T helper 17 (Th17) cells were determined by flow cytometric analysis. Results: A total of differentially expressed 186 genes (120 up-regulated and 66 down-regulated) and 104 proteins (73 up-regulated and 31 down-regulated) were identified. The gene ontology and KEGG pathway analyses indicated that CNV was mainly associated with immune and inflammatory responses, such as cellular response to IFN-ß and Th17 cell differentiation. Moreover, the key nodes of the protein-protein interaction network mainly involved up-regulated proteins, including alpha A crystallin and fibroblast growth factor 2, and were verified by Western blotting. To confirm the changes in gene expression, real-time quantitative PCR was performed. Furthermore, levels of IFN-ß in both the retina and plasma, as measured by enzyme-linked immunosorbent assay (ELISA), were significantly lower in the CNV group than in the control group. IFN-ß treatment significantly reduced CNV lesion size and promoted the proliferation of Th17 cells in laser-treated mice. Conclusions: This study demonstrates that the occurrence of CNV might be associated with the dysfunction of immune and inflammatory processes and that IFN-ß could serve as a potential therapeutic target.


Asunto(s)
Neovascularización Coroidal , Interferón beta , Ratones , Animales , Proteómica , Neovascularización Coroidal/tratamiento farmacológico , Retina/patología , Transducción de Señal
12.
J Acoust Soc Am ; 153(1): 88, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36732244

RESUMEN

The recently proposed semi-blind source separation (SBSS) method for nonlinear acoustic echo cancellation (NAEC) outperforms adaptive NAEC in attenuating the nonlinear acoustic echo. However, the multiplicative transfer function (MTF) approximation makes it unsuitable for real-time applications, especially in highly reverberant environments, and the natural gradient makes it hard to balance well between fast convergence speed and stability. In this paper, two more effective SBSS methods based on auxiliary-function-based independent vector analysis (AuxIVA) and independent low-rank matrix analysis (ILRMA) are proposed. The convolutive transfer function approximation is used instead of the MTF so that a long impulse response can be modeled with a short latency. The optimization schemes used in AuxIVA and ILRMA are carefully regularized according to the constrained demixing matrix of NAEC. The experimental results validate significantly better echo cancellation performances of the proposed methods.

13.
J Colloid Interface Sci ; 636: 245-254, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634394

RESUMEN

Fiber-shaped supercapacitor (FSSC) is considered as a promising energy storage device for wearable electronics due to its high power density and outstanding safety. However, it is still a great challenge to simultaneously achieve high specific capacitance especially at rapid charging/discharging rate and long-term cycling stability of fiber electrode in FSSC for practical application. Here, a ternary poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/reduced graphene oxide/polypyrrole (PEDOT:PSS/rGO/PPy) fiber electrode was constructed by in situ chemical polymerization of pyrrole on hydrothermally-assembled and acid-treated PEDOT:PSS/rGO (PG) hybrid hydrogel fiber. In this case, the porous PG hybrid fiber framework possesses combined advantages of highly-conductive PEDOT and flexible two-dimensional (2D) small-sized rGO sheets, which provides large surface area for the deposition of high-pseudocapacitance PPy, multiscale electrons/ions transport channels for the efficient utilization of active sites, and buffering layers to accommodate the structure change during electrochemical process. Attributed to the synergy, as-obtained ternary fiber electrode presents ultrahigh volumetric/areal specific capacitance (389 F cm-3 at 1 A cm-3 or 983 mF cm-2 at 2.5 mA cm-2) and outstanding rate performance (56 %, 1-20 A cm-3). In addition, 80 % preservation of initial capacitance after 8000 cycles for the corresponding FSSC also illustrates its greatly improved cycle stability compared with 64 % of binary PEDOT:PSS/PPy based counterpart. Accordingly, here proposed strategy promises a new opportunity to develop high-activity and durable electrode materials with potential applications in supercapacitor and beyond.

14.
Sci Rep ; 13(1): 774, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641503

RESUMEN

Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC50) compared with the same variant produced in CHO cells and an almost six-fold IC50 reduction compared with wild-type hACE2-Fc.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Animales , Cricetinae , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Cricetulus , Simulación de Dinámica Molecular , Unión Proteica
15.
Adv Mater ; 35(8): e2209628, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36480021

RESUMEN

Due to the unique electronic structure of aluminum ions (Al3+ ) with strong Coulombic interaction and complex bonding situation (simultaneously covalent/ionic bonds), traditional electrodes, mismatching with the bonding orbital of Al3+ , usually exhibit slow kinetic process with inferior rechargeable aluminum batteries (RABs) performance. Herein, to break the confinement of the interaction mismatch between Al3+ and the electrode, a previously unexplored Se2.9 S5.1 -based cathode with sufficient valence electronic energy overlap with Al3+ and easily accessible structure is potentially developed. Through this new strategy, Se2.9 S5.1 encapsulated in multichannel carbon nanofibers with free-standing structure exhibits a high capacity of 606 mAh g-1 at 50 mA g-1 , high rate-capacity (211 mAh g-1 at 2.0 A g-1 ), robust stability (187 mAh g-1 at 0.5 A g-1 after 3,000 cycles), and enhanced flexibility. Simultaneously, in/ex-situ characterizations also reveal the unexplored mechanism of Sex Sy in RABs.

17.
Front Endocrinol (Lausanne) ; 13: 1001349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465658

RESUMEN

Objective: Thyroid-associated ophthalmopathy (TAO) is a disfiguring autoimmune disease, which destroys the structure of orbital tissues and even threatens vision. Metabolic reprograming is critical in autoimmune diseases; however, the metabolic basis of TAO remains to be clarified. Our study aimed to reveal the metabolic profile of TAO. Methods: Orbital adipose/connective tissues from eleven TAO patients and twelve control subjects were collected during surgeries and analyzed with liquid chromatograph-mass spectrometer. Orthogonal partial least-squares discrimination analysis (OPLS-DA), variable importance in projection (VIP), heat map, and volcano plot were used to reveal metabolic profile in TAO. Pathway analysis and metabolites-gene analysis were utilized to explore potential metabolic metabolism in TAO. Results: 3038 metabolites were detected in samples from the TAO patients and the controls. OPLS-DA analysis of the metabolomics results showed two distinguished groups, demonstrating that TAO has a unique metabolome. Univariate tests identified 593 dysregulated metabolites (P < 0.05), including 367 increased metabolites and 226 decreased metabolites. Pathway analysis showed that changed metabolites were enriched in cholesterol metabolism, choline metabolism in cancer, fat digestion and absorption, regulation of lipolysis in adipocytes, and insulin resistance. In addition, metabolites-gene analysis illustrated that cholesterol metabolism was involved in the pathogenesis of TAO. Endoplasmic reticulum stress-related genes (ATF6, PERK, and IRE1α) expressions were higher in TAO orbital tissues than in control orbital tissues verified by western blot. Additionally, the expression level of diacylglycerol acyltransferase 1 (DGAT1), a key metabolic protein for triacylglycerol synthesis, was increased in orbital tissues of TAO detected by qRT-PCR, indicating disrupted cholesterol metabolism in TAO. Conclusion: The present study demonstrated different metabolite profiles and potential metabolic mechanisms in TAO.


Asunto(s)
Enfermedades Autoinmunes , Oftalmopatía de Graves , Humanos , Oftalmopatía de Graves/genética , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Tejido Adiposo , Colesterol
18.
ACS Nano ; 16(12): 21248-21258, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36480658

RESUMEN

Fast charge separation and transfer (CST) is essential for achieving efficient solar conversion processes. This CST process requires not only a strong driving force but also a sufficient charge carrier concentration, which is not easily achievable with traditional methods. Herein, we report a rapid hydrogenation method enabled by gallium-based liquid metals (GBLMs) to modify the prototypical WO3 photoelectrode to enhance the CST for a PEC process. Protons in solution are controllably embedded into the WO3 photoanode accompanied by electron injection due to the strong reduction capability of GBLMs. This process dramatically increases the carrier concentration of the WO3 photoanode, leading to improved charge separation and transfer. The hydrogenated WO3 photoanode exhibits over a 229% improvement in photocurrent density with long-term stability. The effectiveness of GBLMs treatment in accelerating the CST process is further proved using other more general semiconductor photoelectrodes, including Nb2O5 and TiO2.

19.
Small Methods ; 6(12): e2201281, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36351768

RESUMEN

Rechargeable aluminum batteries (RABs), with abundant aluminum reserves, low cost, and high safety, give them outstanding advantages in the postlithium batteries era. However, the high charge density (364 C mm-3 ) and large binding energy of three-electron-charge aluminum ions (Al3+ ) de-intercalation usually lead to irreversible structural deterioration and decayed battery performance. Herein, to mitigate these inherent defects from Al3+ , an unexplored family of superlattice-type tungsten selenide-sodium dodecylbenzene sulfonate (SDBS) (S-WSe2 ) cathode in RABs with a stably crystal structure, expanded interlayer, and enhanced Al-ion diffusion kinetic process is proposed. Benefiting from the unique advantage of superlattice-type structure, the anionic surfactant SDBS in S-WSe2 can effectively tune the interlayer spacing of WSe2 with released crystal strain from high-charge-density Al3+ and achieve impressively long-term cycle stability (110 mAh g-1 over 1500 cycles at 2.0 A g-1 ). Meanwhile, the optimized S-WSe2 cathode with intrinsic negative attraction of SDBS significantly accelerates the Al3+ diffusion process with one of the best rate performances (165 mAh g-1 at 2.0 A g-1 ) in RABs. The findings of this study pave a new direction toward durable and high-performance electrode materials for RABs.

20.
Anal Methods ; 14(43): 4300-4308, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36268819

RESUMEN

Dual-mode sensing with a two-signal read-out is conducive to the improvement of detection accuracy. Herein, a fluorescent and scattering dual-mode chemosensor for tetracycline (TC) is proposed based on a carbon dot@cerium-guanosine monophosphate (CD@GMP-Ce) coordination polymer network. The inexpensive CD@GMP-Ce was prepared by exploiting the adaptive inclusion capability of coordination polymers and possessed remarkable fluorescence and strong Rayleigh scattering. The functional CD@GMP-Ce demonstrated fluorescence and scattering, the two optical-signal responses to TC simultaneously. Based on TC-specific fluorescence and scattering decline, the dual-mode detection of TC was established and the probe's detection limits were 43 nM in the fluorescence mode and 77 nM in the scattering mode, respectively. Furthermore, the potential application of the dual-mode sensor was verified by measuring TC in milk and tap-water samples. The study not only provides a new perspective for the development of assay methods for TC but also expands the applications of cerium coordination polymers.


Asunto(s)
Cerio , Polímeros , Guanosina Monofosfato , Carbono , Espectrometría de Fluorescencia/métodos , Tetraciclina , Antibacterianos , Colorantes Fluorescentes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...